Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Am J Trop Med Hyg ; 107(4): 845-849, 2022 10 12.
Article in English | MEDLINE | ID: covidwho-2265832

ABSTRACT

Early detection of SARS-CoV-2 infection is crucial to prevent its spread. This study aimed to document test sensitivity/specificity, correlation with cycle threshold value from polymerase chain reaction (PCR), fitness-for-use in different populations and settings, and user perspectives that could inform large-scale implementation. In this study, we evaluated the performance of a rapid antigen detection test, BD Veritor, and compared this (and another rapid test, Standard Q) against reverse transcription PCR (RT-PCR) in terms of sensitivity and specificity in 130 symptomatic and 130 asymptomatic adults. In addition, we evaluated the suitability and ease of use of the BD Veritor test in a subsample of study participants (n = 42) and implementers (n = 5). At 95% confidence interval, the sensitivity of the BD Veritor and Standard Q test were 70% and 63% in symptomatic and 87% and 73% in asymptomatic individuals, respectively, regarding positive SARS-CoV-2 RT-PCR results. Overall, the BD Veritor test was 78% sensitive and 99.5% specific compared with RT-PCR irrespective of the cycle threshold. This warrants large field evaluation as well as use of the rapid antigen test for quick assessment of SARS-CoV-2 for containment of epidemics in the country.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antigens, Viral , Bangladesh/epidemiology , COVID-19/diagnosis , COVID-19 Testing , Humans , Sensitivity and Specificity
2.
J Racial Ethn Health Disparities ; 2023 Jan 18.
Article in English | MEDLINE | ID: covidwho-2175346

ABSTRACT

OBJECTIVES: Uncovering and addressing disparities in infectious disease outbreaks require a rapid, methodical understanding of local epidemiology. We conducted a seroprevalence study of SARS-CoV-2 infection in Holyoke, Massachusetts, a majority Hispanic city with high levels of socio-economic disadvantage to estimate seroprevalence and identify disparities in SARS-CoV-2 infection. METHODS: We invited 2000 randomly sampled households between 11/5/2020 and 12/31/2020 to complete questionnaires and provide dried blood spots for SARS-CoV-2 antibody testing. We calculated seroprevalence based on the presence of IgG antibodies using a weighted Bayesian procedure that incorporated uncertainty in antibody test sensitivity and specificity and accounted for household clustering. RESULTS: Two hundred eighty households including 472 individuals were enrolled. Three hundred twenty-eight individuals underwent antibody testing. Citywide seroprevalence of SARS-CoV-2 IgG was 13.1% (95% CI 6.9-22.3) compared to 9.8% of the population infected based on publicly reported cases. Seroprevalence was 16.1% (95% CI 6.2-31.8) among Hispanic individuals compared to 9.4% (95% CI 4.6-16.4) among non-Hispanic white individuals. Seroprevalence was higher among Spanish-speaking households (21.9%; 95% CI 8.3-43.9) compared to English-speaking households (10.2%; 95% CI 5.2-18.0) and among individuals in high social vulnerability index (SVI) areas based on the CDC SVI (14.4%; 95% CI 7.1-25.5) compared to low SVI areas (8.2%; 95% CI 3.1-16.9). CONCLUSIONS: The SARS-CoV-2 IgG seroprevalence in a city with high levels of social vulnerability was 13.1% during the pre-vaccination period of the COVID-19 pandemic. Hispanic individuals and individuals in communities characterized by high SVI were at the highest risk of infection. Public health interventions should be designed to ensure that individuals in high social vulnerability communities have access to the tools to combat COVID-19.

3.
Front Immunol ; 13: 1052374, 2022.
Article in English | MEDLINE | ID: covidwho-2198893

ABSTRACT

The longevity of immune responses induced by different degrees of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection provides information important to understanding protection against coronavirus disease 2019 (COVID-19). Here, we report the persistence of SARS-CoV-2 spike receptor-binding domain (RBD) specific antibodies and memory B cells recognizing this antigen in sequential samples from patients in Bangladesh with asymptomatic, mild, moderate and severe COVID-19 out to six months following infection. Since the development of long-lived memory B cells, as well as antibody production, is likely to be dependent on T helper (Th) cells, we also investigated the phenotypic changes of Th cells in COVID-19 patients over time following infection. Our results show that patients with moderate to severe COVID-19 mounted significant levels of IgG antibodies out to six months following infection, while patients with asymptomatic or mild disease had significant levels of IgG antibodies out to 3 months following infection, but these then fell more rapidly at 6 months than in patients with higher disease severity. Patients from all severity groups developed circulating memory B cells (MBCs) specific to SARS-CoV-2 spike RBD by 3 months following infection, and these persisted until the last timepoint measured at 6 months. A T helper cell response with an effector memory phenotype was observed following infection in all symptomatic patients, while patients with asymptomatic infection had no significant increases in effector Th1, Th2 and Th17 effector memory cell responses. Our results suggest that the strength and magnitude of antibody and memory B cells induced following SARS-CoV-2 infection depend on the severity of the disease. Polarization of the Th cell response, with an increase in Th effector memory cells, occurs in symptomatic patients by day 7 following infection, with increases seen in Th1, Th2, Th17 and follicular helper T cell subsets.


Subject(s)
COVID-19 , Humans , Bangladesh/epidemiology , Memory B Cells , SARS-CoV-2 , Immunoglobulin G , Antibodies, Viral , Patient Acuity , Th17 Cells
4.
IJID Reg ; 3: 211-217, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1814553

ABSTRACT

Objective: To evaluate severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific antibody responses after Covishield vaccination for 6 months after vaccination. Design: SARS-CoV-2-specific antibody responses were assessed by enzyme-linked immunosorbent assay of the recombinant receptor-binding domain of SARS-CoV-2 in 381 adults given the Covishield vaccine at baseline (n=119), 1 month (n=126) and 2 months (n=75) after the first dose, 1 month after the second dose (n=161), and monthly for 3 additional months. Results: Over 51% of participants were seropositive at baseline (before vaccination with Covishield), and almost all participants (159/161) became seropositive 1 month after the second dose. Antibody levels peaked 1 month after receipt of the second dose of vaccine, and decreased by 4 months after the first dose; the lowest responses were found 6 months after the first dose, although antibody responses and responder frequencies remained significantly higher compared with baseline (P<0.0001). Compared with younger participants, older participants had lower antibody responses 6 months after the first dose of vaccine (P<0.05). Participants who had previous SARS-CoV-2 infection showed robust higher antibody responses after vaccination. Conclusions: These findings help to elucidate the longevity of vaccine-specific antibody responses following vaccination with Covishield, and provide information relevant to the planning of booster doses after the initial two doses of vaccine.

5.
IJID Reg ; 2: 198-203, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1665003

ABSTRACT

Design: A cross-sectional study was conducted amongst household members in 32 districts of Bangladesh to build knowledge about disease epidemiology and seroepidemiology of coronavirus disease 2019 (COVID-19). Objective: Antibody responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were assessed in people between April and October 2020. Results: The national seroprevalence rates of immunoglobulin G (IgG) and IgM were estimated to be 30.4% and 39.7%, respectively. In Dhaka, the seroprevalence of IgG was 35.4% in non-slum areas and 63.5% in slum areas. In areas outside of Dhaka, the seroprevalence of IgG was 37.5% in urban areas and 28.7% in rural areas. Between April and October 2020, the highest seroprevalence rate (57% for IgG and 64% for IgM) was observed in August. IgM antibody was more prevalent in younger participants, while older participants had more frequent IgG seropositivity. Follow-up specimens from patients with COVID-19 and their household members suggested that both IgG and IgM seropositivity increased significantly at day 14 and day 28 compared with day 1 after enrolment. Conclusions: SARS-CoV-2 had spread extensively in Bangladesh by October 2020. This highlights the importance of monitoring seroprevalence data, particularly with the emergence of new SARS-CoV-2 variants over time.

6.
PLoS Negl Trop Dis ; 16(1): e0010102, 2022 01.
Article in English | MEDLINE | ID: covidwho-1603353

ABSTRACT

BACKGROUND: COVID-19 caused by SARS-CoV-2 ranges from asymptomatic to severe disease and can cause fatal and devastating outcome in many cases. In this study, we have compared the clinical, biochemical and immunological parameters across the different disease spectrum of COVID-19 in Bangladeshi patients. METHODOLOGY/PRINCIPAL FINDINGS: This longitudinal study was conducted in two COVID-19 hospitals and also around the community in Dhaka city in Bangladesh between November 2020 to March 2021. A total of 100 patients with COVID-19 infection were enrolled and classified into asymptomatic, mild, moderate and severe cases (n = 25/group). In addition, thirty age and sex matched healthy participants were enrolled and 21 were analyzed as controls based on exclusion criteria. After enrollment (study day1), follow-up visits were conducted on day 7, 14 and 28 for the cases. Older age, male gender and co-morbid conditions were the risk factors for severe COVID-19 disease. Those with moderate and severe cases of infection had low lymphocyte counts, high neutrophil counts along with a higher neutrophil-lymphocyte ratio (NLR) at enrollment; this decreased to normal range within 42 days after the onset of symptom. At enrollment, D-dimer, CRP and ferritin levels were elevated among moderate and severe cases. The mild, moderate, and severe cases were seropositive for IgG antibody by day 14 after enrollment. Moderate and severe cases showed significantly higher IgM and IgG levels of antibodies to SARS-CoV-2 compared to mild and asymptomatic cases. CONCLUSION/SIGNIFICANCE: We report on the clinical, biochemical, and hematological parameters associated with the different severity of COVID-19 infection. We also show different profile of antibody response against SARS-CoV-2 in relation to disease severity, especially in those with moderate and severe disease manifestations compared to the mild and asymptomatic infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , Severity of Illness Index , Adult , Antibody Formation , Bangladesh , COVID-19 Testing , Cohort Studies , Female , Fibrin Fibrinogen Degradation Products , Humans , Immunoglobulin G , Longitudinal Studies , Lymphocytes , Male , Middle Aged , Neutrophils , Risk Factors , SARS-CoV-2 , Viral Load
7.
Curr Opin Infect Dis ; 34(5): 423-431, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1452768

ABSTRACT

PURPOSE OF REVIEW: Antimicrobial resistance (AMR) in bacteria poses a major risk to global public health, with many factors contributing to the observed increase in AMR. International travel is one recognized contributor. The purpose of this review is to summarize current knowledge regarding the acquisition, carriage and spread of AMR bacteria by international travelers. RECENT FINDINGS: Recent studies have highlighted that travel is an important risk factor for the acquisition of AMR bacteria, with approximately 30% of studied travelers returning with an acquired AMR bacterium. Epidemiological studies have shown there are three major risk factors for acquisition: travel destination, antimicrobial usage and travelers' diarrhea (TD). Analyses have begun to illustrate the AMR genes that are acquired and spread by travelers, risk factors for acquisition and carriage of AMR bacteria, and local transmission of imported AMR organisms. SUMMARY: International travel is a contributor to the acquisition and dissemination of AMR organisms globally. Efforts to reduce the burden of AMR organisms should include a focus on international travelers. Routine genomic surveillance would further elucidate the role of international travel in the global spread of AMR bacteria.


Subject(s)
Diarrhea , Travel , Anti-Bacterial Agents/therapeutic use , Bacteria , Diarrhea/drug therapy , Global Health , Humans
8.
Science ; 371(6529)2021 02 05.
Article in English | MEDLINE | ID: covidwho-1388436

ABSTRACT

Analysis of 772 complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from early in the Boston-area epidemic revealed numerous introductions of the virus, a small number of which led to most cases. The data revealed two superspreading events. One, in a skilled nursing facility, led to rapid transmission and significant mortality in this vulnerable population but little broader spread, whereas other introductions into the facility had little effect. The second, at an international business conference, produced sustained community transmission and was exported, resulting in extensive regional, national, and international spread. The two events also differed substantially in the genetic variation they generated, suggesting varying transmission dynamics in superspreading events. Our results show how genomic epidemiology can help to understand the link between individual clusters and wider community spread.


Subject(s)
COVID-19/epidemiology , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , Boston/epidemiology , COVID-19/transmission , Disease Outbreaks , Epidemiological Monitoring , Humans
9.
J Clin Pathol ; 74(8): 496-503, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1247388

ABSTRACT

Developing and deploying new diagnostic tests are difficult, but the need to do so in response to a rapidly emerging pandemic such as COVID-19 is crucially important. During a pandemic, laboratories play a key role in helping healthcare providers and public health authorities detect active infection, a task most commonly achieved using nucleic acid-based assays. While the landscape of diagnostics is rapidly evolving, PCR remains the gold-standard of nucleic acid-based diagnostic assays, in part due to its reliability, flexibility and wide deployment. To address a critical local shortage of testing capacity persisting during the COVID-19 outbreak, our hospital set up a molecular-based laboratory developed test (LDT) to accurately and safely diagnose SARS-CoV-2. We describe here the process of developing an emergency-use LDT, in the hope that our experience will be useful to other laboratories in future outbreaks and will help to lower barriers to establishing fast and accurate diagnostic testing in crisis conditions.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Emergency Service, Hospital , Laboratories, Hospital , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , COVID-19/virology , Humans , Predictive Value of Tests , Reproducibility of Results
10.
Emerg Infect Dis ; 27(6): 1598-1606, 2021 06.
Article in English | MEDLINE | ID: covidwho-1236654

ABSTRACT

Relatively few coronavirus disease cases and deaths have been reported from sub-Saharan Africa, although the extent of its spread remains unclear. During August 10-September 11, 2020, we recruited 2,214 participants for a representative household-based cross-sectional serosurvey in Juba, South Sudan. We found 22.3% of participants had severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain IgG titers above prepandemic levels. After accounting for waning antibody levels, age, and sex, we estimated that 38.3% (95% credible interval 31.8%-46.5%) of the population had been infected with SARS-CoV-2. At this rate, for each PCR-confirmed SARS-CoV-2 infection reported by the Ministry of Health, 103 (95% credible interval 86-126) infections would have been unreported, meaning SARS-CoV-2 has likely spread extensively within Juba. We also found differences in background reactivity in Juba compared with Boston, Massachusetts, USA, where the immunoassay was validated. Our findings underscore the need to validate serologic tests in sub-Saharan Africa populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Africa South of the Sahara , Antibodies, Viral , Boston , Cross-Sectional Studies , Humans , Immunoglobulin G , Massachusetts , Seroepidemiologic Studies , South Sudan
11.
medRxiv ; 2020 Jul 20.
Article in English | MEDLINE | ID: covidwho-915962

ABSTRACT

BACKGROUND: Characterizing the humoral immune response to SARS-CoV-2 and developing accurate serologic assays are needed for diagnostic purposes and estimating population-level seroprevalence. METHODS: We measured the kinetics of early antibody responses to the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2 in a cohort of 259 symptomatic North American patients infected with SARS-CoV-2 (up to 75 days after symptom onset) compared to antibody levels in 1548 individuals whose blood samples were obtained prior to the pandemic. RESULTS: Between 14-28 days from onset of symptoms, IgG, IgA, or IgM antibody responses to RBD were all accurate in identifying recently infected individuals, with 100% specificity and a sensitivity of 97%, 91%, and 81% respectively. Although the estimated median time to becoming seropositive was similar across isotypes, IgA and IgM antibodies against RBD were short-lived with most individuals estimated to become seronegative again by 51 and 47 days after symptom onset, respectively. IgG antibodies against RBD lasted longer and persisted through 75 days post-symptoms. IgG antibodies to SARS-CoV-2 RBD were highly correlated with neutralizing antibodies targeting the S protein. No cross-reactivity of the SARS-CoV-2 RBD-targeted antibodies was observed with several known circulating coronaviruses, HKU1, OC 229 E, OC43, and NL63. CONCLUSIONS: Among symptomatic SARS-CoV-2 cases, RBD-targeted antibodies can be indicative of previous and recent infection. IgG antibodies are correlated with neutralizing antibodies and are possibly a correlate of protective immunity.

12.
Sci Immunol ; 5(52)2020 10 08.
Article in English | MEDLINE | ID: covidwho-842518

ABSTRACT

We measured plasma and/or serum antibody responses to the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2 in 343 North American patients infected with SARS-CoV-2 (of which 93% required hospitalization) up to 122 days after symptom onset and compared them to responses in 1548 individuals whose blood samples were obtained prior to the pandemic. After setting seropositivity thresholds for perfect specificity (100%), we estimated sensitivities of 95% for IgG, 90% for IgA, and 81% for IgM for detecting infected individuals between 15 and 28 days after symptom onset. While the median time to seroconversion was nearly 12 days across all three isotypes tested, IgA and IgM antibodies against RBD were short-lived with median times to seroreversion of 71 and 49 days after symptom onset. In contrast, anti-RBD IgG responses decayed slowly through 90 days with only 3 seropositive individuals seroreverting within this time period. IgG antibodies to SARS-CoV-2 RBD were strongly correlated with anti-S neutralizing antibody titers, which demonstrated little to no decrease over 75 days since symptom onset. We observed no cross-reactivity of the SARS-CoV-2 RBD-targeted antibodies with other widely circulating coronaviruses (HKU1, 229 E, OC43, NL63). These data suggest that RBD-targeted antibodies are excellent markers of previous and recent infection, that differential isotype measurements can help distinguish between recent and older infections, and that IgG responses persist over the first few months after infection and are highly correlated with neutralizing antibodies.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Betacoronavirus/genetics , Biomarkers/blood , COVID-19 , Cohort Studies , Coronavirus Infections/virology , Cross Reactions , Dried Blood Spot Testing , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
13.
Int J Infect Dis ; 101: 220-225, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-813629

ABSTRACT

OBJECTIVES: Studies on serological responses following coronavirus disease-2019 (COVID-19) have been published primarily in individuals who are moderately or severely symptomatic, but there are few data from individuals who are mildly symptomatic or asymptomatic. METHODS: We measured IgG, IgM, and IgA to the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by using enzyme-linked immunosorbent assay in mildly symptomatic (n = 108) and asymptomatic (n = 63) on days 1, 7, 14, and 30 following RT-PCR confirmation in Bangladesh and when compared with pre-pandemic samples, including healthy controls (n = 73) and individuals infected with other viruses (n = 79). RESULTS: Mildly symptomatic individuals developed IgM and IgA responses by day 14 in 72% and 83% of individuals, respectively, while 95% of individuals developed IgG response, and rose to 100% by day 30. In contrast, individuals infected with SARS-CoV-2 but who remained asymptomatic developed antibody responses significantly less frequently, with only 20% positive for IgA and 22% positive for IgM by day 14, and 45% positive for IgG by day 30 after infection. CONCLUSIONS: These results confirm immune responses are generated following COVID-19 who develop mildly symptomatic illness. However, those with asymptomatic infection do not respond or have lower antibody levels. These results will impact modeling needed for determining herd immunity generated by natural infection or vaccination.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Carrier State/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Antibody Formation , Bangladesh/epidemiology , COVID-19/blood , COVID-19/epidemiology , COVID-19/virology , Carrier State/blood , Carrier State/epidemiology , Carrier State/virology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Pandemics , SARS-CoV-2/genetics
14.
FASEB J ; 34(10): 13877-13884, 2020 10.
Article in English | MEDLINE | ID: covidwho-733355

ABSTRACT

The diagnosis of COVID-19 requires integration of clinical and laboratory data. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic assays play a central role in diagnosis and have fixed technical performance metrics. Interpretation becomes challenging because the clinical sensitivity changes as the virus clears and the immune response emerges. Our goal was to examine the clinical sensitivity of two most common SARS-CoV-2 diagnostic test modalities, polymerase chain reaction (PCR) and serology, over the disease course to provide insight into their clinical interpretation in patients presenting to the hospital. We conducted a single-center, retrospective study. To derive clinical sensitivity of PCR, we identified 209 PCR-positive SARS-CoV-2 patients with multiple PCR test results (624 total PCR tests) and calculated daily sensitivity from date of symptom onset or first positive test. Clinical sensitivity of PCR decreased with days post symptom onset with >90% clinical sensitivity during the first 5 days after symptom onset, 70%-71% from Days 9 to 11, and 30% at Day 21. To calculate daily clinical sensitivity by serology, we utilized 157 PCR-positive patients with a total of 197 specimens tested by enzyme-linked immunosorbent assay for IgM, IgG, and IgA anti-SARS-CoV-2 antibodies. In contrast to PCR, serological sensitivity increased with days post symptom onset with >50% of patients seropositive by at least one antibody isotype after Day 7, >80% after Day 12, and 100% by Day 21. Taken together, PCR and serology are complimentary modalities that require time-dependent interpretation. Superimposition of sensitivities over time indicate that serology can function as a reliable diagnostic aid indicating recent or prior infection.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , COVID-19/diagnosis , SARS-CoV-2 , Antibodies, Viral/blood , COVID-19/blood , Female , Hospitals , Humans , Male , Middle Aged , Retrospective Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL